On the Structure of Turbulence in the Bottom Boundary Layer of the Coastal Ocean
نویسندگان
چکیده
Six sets of particle image velocimetry (PIV) data from the bottom boundary layer of the coastal ocean are examined. The data represent periods when the mean currents are higher, of the same order, and much weaker than the wave-induced motions. The Reynolds numbers based on the Taylor microscale (Re ) are 300–440 for the high, 68–83 for the moderate, and 14–37 for the weak mean currents. The moderate–weak turbulence levels are typical of the calm weather conditions at the LEO-15 site because of the low velocities and limited range of length scales. The energy spectra display substantial anisotropy at moderate to high wavenumbers and have large bumps at the transition from the inertial to the dissipation range. These bumps have been observed in previous laboratory and atmospheric studies and have been attributed to a bottleneck effect. Spatial bandpass-filtered vorticity distributions demonstrate that this anisotropy is associated with formation of small-scale, horizontal vortical layers. Methods for estimating the dissipation rates are compared, including direct estimates based on all of the gradients available from 2D data, estimates based on gradients of one velocity component, and those obtained from curve fitting to the energy spectrum. The estimates based on vertical gradients of horizontal velocity are higher and show better agreement with the direct results than do those based on horizontal gradients of vertical velocity. Because of the anisotropy and low turbulence levels, a 5/3 line-fit to the energy spectrum leads to mixed results and is especially inadequate at moderate to weak turbulence levels. The 2D velocity and vorticity distributions reveal that the flow in the boundary layer at moderate speeds consists of periods of “gusts” dominated by large vortical structures separated by periods of more quiescent flows. The frequency of these gusts increases with Re , and they disappear when the currents are weak. Conditional sampling of the data based on vorticity magnitude shows that the anisotropy at small scales persists regardless of vorticity and that most of the variability associated with the gusts occurs at the low-wave-number ends of the spectra. The dissipation rates, being associated with small-scale structures, do not vary substantially with vorticity magnitude. In stark contrast, almost all the contributions to the Reynolds shear stresses, estimated using structure functions, are made by the highand intermediate-vorticity-magnitude events. During low vorticity periods the shear stresses are essentially zero. Thus, in times with weak mean flow but with wave orbital motion, the Reynolds stresses are very low. Conditional sampling based on phase in the wave orbital cycle does not show any significant trends.
منابع مشابه
Three-Dimensional Turbulence Characteristics of the Bottom Boundary Layer of the Coastal Ocean by
Three-Dimensional Turbulence Characteristics of the Bottom Boundary Layer of the Coastal Ocean
متن کاملNumerical Modeling of Turbulent Processes in outflow of the Persian Gulf
In this study, measured hydrophysical data collected by the University of Miami researchers from the southern part of the Strait of Hormuz during the period December 1996 to March 1998 and climate data from the Qeshm island meteorological station were used to simulate water column turbulence south of the Qeshm Island, via General Ocean Turbulence Model (GOTM). The model does not use slip and fl...
متن کاملTurbulent Mixing in Oceanic Surface and Benthic Boundary Layers
The objectives of the specific effort being reported are to improve the fundamental knowledge of turbulent mixing and diffusion processes occurring in oceanic boundary layers, with special emphases on the surface mixed layer and the wave-current boundary layer in coastal oceans. In the studies of surface mixed layers, the focus is on the penetration of a mixed layer (say, driven by the wind) in...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملA Study of the Variability of the Coastal Marine Atmospheric Boundary Layer
The long term goals are: 1/ To understand the impact of complex coastal terrain and/or coastline orientation on the structure of the coastal marine atmospheric boundary layer (MABL); 2/ To study the effect on the atmospheric forcing of the coastal ocean, by the the local flow induced by the coastal terrain, including possible feedback mechanisms.; 3/ To understand the internal turbulence struct...
متن کاملStudy of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کامل